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Abstract

Recursive parameter estimation is considered, updating a model of a system as new

observations of the input and output are received. The most well established and widely used schemes,
based on least squares or prediction-error minimisation, do not incorporate information on the
distributions of the parameters or the observation errors. Bayes updating by contrast requires such
information to be specified as probability density functions {pdf’s). If the information about
distribution is significant but imprecise, one possibility, widely canvassed, is to employ sets of pdf’s.
Two such approaches, Convex Bayes Estimation and Upper and Lower Probabilities (ULP's}, are
reviewed. The operations in applying ULP’s to parameter estimation are examined and computational
load is discussed. An example problem is presented, and a scalar measure of uncertainty for the

posterior pdf is proposed.
1 INTRODUCTION

Algorithms for recursive estimation of the
mode! parameters of a dynamical system,
updating the estimates as new observations of
the imput and output are received, have
matured into a small collection of widely
accepted and well understoed techniques.
Among the most prominent are least-squares-
based minimum-covariance and prediction-
error-minimising  algorithms {Ljung [1987],
MNorton [1986], Soderstrom and Stoica [1989]).
They do not make restrictive assumptions
about the distributions of the initial parameter
error, observation error or modelling error and
do not wuse such information (except
incidentally to justify the algorithms in special
cases). This is an advantage if little is known
about the probability density functions {(pdf’s)
of the random variabies (parameter errors and
model-output ervor, consisting of ohservation
error  plus  modelling error, henceforth
“observation error”  for short), but it is
inefficient if a significant amount is known.

A natural framework for parameter estimation
taking distributional information fully into
account is Bayes estimation, using each
successive observation of the system output o
update the pdf of the unknown parameters
conditioned on the observations to date and on
the initial information supplied as a prior pdf.
Bayes estimation is aftractive when a fuller
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characterisation of the estimation errors than
their mean and ¢ovariance is desirable, as
when they are markedly skewed or multimodat
or have finite support. However, Bayes
estimation may be rejected because, as well as
often having heavy computational demand, it
requires specification of two pdfs: the prior
pdf of the parameters and the pdf of
cbservation error, Le. of the observations
conditioned on the parameters. The need for a
prior parameter pdf is not a serious practical
difficulty so  long as the cumulative
information in the observations dominates the
posterior pdf. Prior distributional information
may, however, be hard to supply if the
inputoutput  records are short or the
parameters are represented as time-varying, for
instance as random walks or integrated random
walks (Norton [1975, 1976}, Jakeman and
Young [1979]). For time-varying parameters,
the pdf of the “process noise” forcing the
parameter variation must be supplied and liftle
may be known of it. An observation-error pdf
is hard to supply when systematic modelling
€ITor is prominent.

For these reasons, it may be more attractive o
specify a set of pdfs in place of one or more
of the pdf°s. Bayes updating using sets of
pdf’s, or more often of discrete probabilities,
has been suggested by a number of authors,
This paper reviews some of these suggestions
in the context of parameter estimation and



illustrates one of them, Upper and Lower
Probabilities (ULP’s), in an example. A scalar
measure of uncertainty, geared to ULP
updating, is also suggested.

7 VAGUE BELIEFS AND SETS OF PBE’S

The idea of employing sets of probabilities has
a long history (Kyburg [1961], Good [1962],
Levi [1974, 1980}, Williams [1976], Fine
[1988], Walley [1991], Lehner er al [1996]).
[t has been closely associated with attempts to
establish new caleuli for quantifying beliefs
and revising them on receiving new evidence;
as a result it has been contentious. Although
the meaning of probabilities or pdf's being
specified must be discussed briefly here, this
paper is more concerned with whether the
estimation technigue uses information likely to
he available, is conceptually straightforward
and yields easily interpreted results.

The raw material for updating estimates of the
parameter vector @ of a selected model

¥y =k(¢‘,)€)+v[ (1)

at time ¢ by Bayes’” Rule consists of

s the new observation y,

o the vector ¢ of known explanatory
variables, which include the input

s the pdf f{y,|&, inferred from the pdf fiv)
of the observation emor

& the prior pdf f74Y,;) conditioned on ail
information (initial and observations} up to
and including time #-/.

For simplicity, & & and f{v) will be faken as

time-invariant, Initially, f&Y,) has to be

supplied; commonly knowledge of Y, is

vague, and sometimes that of ffv) is too, so

either or both might be specified as sets rather

than unigue pdf{s.

The observations are affected by unpredictable
instrumeniation errors, notse and unmonitored
disturbances naturally characterised by their
average behaviour in similar situations, so an
ensemble-based interpretation of f{v), and
hence of fv|6), might seem appropriate.
However, whether fiy}8) can be specified
objectively depends on circumstances. When
instrarentation noise and errors dominate,
their average behaviour in large samples may
be measurable beforehand; if systematic but
anknown modeliing error dominates, or if the
disturbance environment is non-stationary,
guesswork is invoived in specifying fiy |8, so
it is a subiective expression of belief. For

961

FBY,), there is no ensemble of realisations of
8 to refer to. The unknown parameters are
definite values which summarise the system’s
behaviour or predict its behaviour well. Thus
fAY,) is best viewed as expressing relative
degrees of belief in possible values. [The
acceptability of this view has been discussed at
enormous length over many years, opting to
employ Bayes’ Rule implies acceptance].

If belief, perhaps vague, has to be quantified,
it must be readily supplied, able to distinguish
differences in confidence, and it must
influence estimates in a reasonable way. Two
simple ways to specify imprecise belisfs are as
either (i} a parametric set of pdf's (e g a range
of means and covariances defining a set of
Gaussian pdf’s), or (i} a range of pdfs
conforming to given constraints, eg upper
and lower probabilities (ULP’s) or probability
densities at some or all values of the support,
otherwise unconstrained except by the
probability axioms. Neapolitan [1996] sees no
compelling reason to resort to non-unique
probabilities or pdf’s, regarding imprecise
beliefs as merely conditional on as yet
unknown information. This may be true but is
little help in this context. He also cites the
objection that if, say, any probability in the
range 0.3 to 0.5 is plausible, it isn’t reasonable
that a probability of 0.299 or 0.501, say, isn’t.
This does not recognise that probabilities at the
extremes of the accéptable range are barely
more credible than those just outside.
Specifying a continuous function over the
range might in principle be a better way 10
register varying confidence in belief, but
would strain one’s powers of introspection.

3 SET-BASED BAYES ESTIMATION

The closest set-based counterpart of classical
estimation for dynamical systems is provided
by Morrell and Stirling [1991], who consider
estimation of state rather than parameters.
State  estimation adds a  time-update
{prediction) stage, also present in parameter
estimation if the parameters are modelled as
time-varying. They update a2 convex set of
state means but a unique covariance, ensuring
that the state set remains convex. The process
noise and observation noise have unique pdfs.

Bayes updating of a convex set of prior
probabilities of discrete values of state has
been widely considered (Potter and Anderson
119801, White [1986], Snow [1991, 19961



The observations are often assumed also to be
discrete-valued, which fits applications such as
medical diagnosis from a succession of
“yes/no” tests but can also approximate
continuous-variable  problems.  Imprecise
knowiedge is embodied in a number of linear
inequalities in the probabilities. An Inequality
might just say that one probability is greater
than another, or a pair of inequalities might be
used to confine a probability to an interval.

if the observation probabilities, conditioned on
the parameters or state, are given unigque
values, the posterior state-probability set is
convex. Hlowever, if they are uncertain and
also defined by a set of linear inequalities, the
posterior set is not generally convex. It does
remain convex if the observation probability
set is a box determined by interval bounds on
individual (scalar) observations.

White [1986] considers estimation of a
discrete state from discrete observations, with
a system model supplying the probability of
sach possible observation value conditioned
on every possible value of present and
previous states. Usually it separates into a
state-transition model and an observation
model, both convex sets defined by linear
inequalities. Exact propagation of the set of
parameter or state values soon becomes too
complicated; in both time and observation
update, the features (such as vertices) of the
prior set and the polytope of forcing or
conditional observation probabilities show in
the updated set, which is thus more
complicated than either. White therefore gives
an approximation algorithm to produce a set of
inequalities containing the posterior set of state
probabilities, and reports that (in a very simple
example) it was heuristically possible to
restrict the number of inequalities without
undue loss of tightness,

Snow [1991, 19967 provides updating schemes
for a prior defined by a set of linear
inequalities and conditioral  observation
probabilities confined to a box. Salo {1996]
offers an alternative updating algorithm to give
tighter posterior bounds. All these techniques
require a number of linear programming
solutions at each update,

The probability-set updating methods all rely
on the sets belng convex, Kyburg and Pittarelli
[1996] point out that adding a constraint of
mutual independence among variables with a

set specification of their joint probabilities
may render that set non-convex.

The next section discusses estimation with
pricr and posterior probability sets defined by
upper and lower bounds, ie. in a box.

4 ULP PARAMETER UPDATING WITH
UNIQUE OBSERVATION-ERROR PDF

4.1 Updating procedure

The literature on ULP’s also has considered
discrete probabilities rather than pdf’s, and for
ease of explanation this section does so, even
though the aim is estimation of continuous-
valued parameters from continuous-valued
observations. Updating bounds on a pdf is
discussed briefly in Section 4.2. The
probabilities here may be regarded as defining
piecewise constant approximated pdfs.

Sefting aside for now the question of how to
segment parameter space, consider events

f=lfe® Rl =12, N (@)
where #1s the parameter vector and the 8, are
disjoint regions of parameter space (histogram
bins, if you lke). At time 4 the prior
probabilities

p(s,-l}‘}ml) = prob(f = E‘)HY;WE) (3)
are to be updated to posterior probabilities
ple;[¥y) by processing observation vector y,
given -

P(}’,WI‘) = G{ f(”; =¥y f?(@ ,91' )}a’vt 4

i
fori=1,2, ..., N. Bayes’ Rule gives
2yleiple;)
pleilty ) = e
plyeiz; )p(e;HEl plyde;ple ;)

NE
B plyleyples)

Pyle ple )+ oy ({P(Sj hJj#i}}
where for conciseness dependence on ¥, of
prebabilities on the right-hand side is not made
explicit. The problem is first to distribute the

p{gj ), subject to

&)

N
2=l )

to minimise p(g]Y,), giving the lower
probability p(e;|1;), then as a separate
exercise maximise it to give the upper
probability p(e;1¥;). Since

PENL)  plylepipleido, | dle;)

is;) 42
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where d is the denominator in (5), and

Go,(ple ;. = 1))

- <0 (8
ple;}
because increasing p{¢;) reduces at least one
of the p(g 3, j=ithrough (6}, p(gi!}’{) is
g
minimised by setting p{gi) to its lower bound
p(e.) then distributing 1- ﬁ(sf}among the
I

as to maximise

lple;.j#i}s0

oy ({p(ej ,j # i}y, subject to their lower and

upper bounds.

This constrained maximisation is readily

performed by setting every p{aj-) to its lower

bound then increasing first whichever p{gj)

has the largest influence on oy, e that for

which p(ytlsj}is largest, until it reaches its

upper hound, then increasing the p(gj)with

the second largest p(y”e:j}, and so on untit

{6) is met, The result is

p(a‘j} = ﬁ{sj}, 1€/<r~1

ple) = ple ) 2 pley) &

p(gj'} = __,,5{5_’,- Y, rHl<j<n- ]J

where the p(ytls'j Vo=l N j=i

have been sorted into decreasing order, then
P(}r’;|5; }5(55)

ple;y= - S {10)
I P(}f‘g%gj)[?(ﬁ‘)‘fo';(ﬁ{fj}
ol
S R V= S , e
TP = T Py e R )
' N -1
*PUledpe ) s T pOy IR )
j=r+
(i)
and
f‘{;! N -
ple )=1-ple)~ pley- XL ple,
v i .ji:i g j:r+§p J
YR J=i
{i2)

Maximisation of each posterior probability is
exactly similar; it is important to carry it out
rather than inferring each upper bound as /-
fsum  of lower hounds of all other
probabilities), as those bounds are generally
mutually incompatibie, being derived by
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independent minimisations. If they are treated
as if compatible, they are jointly too low and
make the inferred “upper bound” too high.
Fatlure to carry out both minimisation and
maximisation accounts for the dilation of
ULP’s encountered by some authors.

4.2 Application to  continucus-valued
variables; computing load

Finding the upper or lower bounds on the
posterior pdf for continuous-valued parameter
vector & and observations is a variational
problem with peint constraints (due to the
bounds on the prior pdf) and an integral
constraint {integration of the posterior pdf to
unity). The constraints make solution
conceptually easy. The counterpart of the
maximisation of o, described above is to find
the set of parameter values over which the
prior probability density must be at its upper
bound, by lowering f; determining a level set

Ufy) =0/ 102 /) (13)

(with £ a function of & only, as y, is known)

untii

[ Fay,_pde+ [ 7Y _do=1

v T oy
(14)

where Ul(fo) is the complement of Uffy). This

is not computationaliy easy unless f(ys|&)

has a simple parameterisation (and perhaps not
even then, e.g. with an orthogonal expansion}.

Segmentation of 4 space to make the problem
discrete  looks inevitable, pending more

research on parameterising f{y,18).

The main computing load in the discrete-&
updating process outlined above is ranking the

p(y[\,s'},»), j=12,..., n j+#iand running

through the corresponding (&, ) until (6) is
met, The load is much smaller than this might
seem to indicate, as only a single sort of all &
p(yt\gj)need be done per time instant

Moreover, a single calculation of the running
totals of the ranked p(y,|& j)allows cheap

determination of » for each /.

For acceptable computing load, vV must not be
too large. A prime motive for Bayes updating
is its ability to deal with pdf's not restricted to
any particuiar parametric family. The price is
the difficult task of quantifying & non-



parametric pdf at adequate resolution over as
many dimensions as elements in & In off-line
paramster estimation, the difficulty may be
eased by iteration, initially quantising & space
coarsely, using the results to select a much
smaller region for finer coverage, and so on.
On line, segments of & space might be merged
ot split according to the size and variation of
the evolving probabilities. Efficiency may also
be improved by segmenting @ space according
to the sensitivity of continuous-time items
such as time constants and gains to the
discrete-time  parameters & Economy in
parameterisation, eg employing a rational
transfer-function model, is essential.

4.3 A scalar measure of ancetainty

The final phase of Bayes estimation s to
extract estimates from the posterior pdf or
discrete probabilities by minimising a risk, the
mean of a cost function {Norton [1986]).
ULP’s confer the extra choice of which pdf or
discrete probability set to use in minimising
the risk. For instance, a conservative policy is
to use that pdf which maximises the minimum
risk; a less pessimistic course would be to
minimise the mean risk over the whole set of
pdf®s admitted by the ULP’s. As such options
are computationally expensive, one might
prefer to wait until the ULP’s are close enough
for a nominal pdf or discrete probabilities to be
calculated fram them. If the ULP’s vary in a
complicated  way, a scalar measure of
remaining uncertainty at each point, or over
each segment, may help in deciding when to
extract the estimates. It may also serve to
highlight deficiencies in the data set.

A measure may be designed by requiring that
it ranges from 0 to |, increases monatonically
with p— p, decreases monotonically with

increasing 2 for fixed - 5, is zero when

p=p, and equals p when p is zero. The
simpiest function found to do so is

T

u(p, p) = (15)

o I“ts)

-+

T

5 EXAMPLE OF ULP UPDATING

To allow easy display of the evolving ULP’s, a
single parameter Jin

=04y (i6)
is estimated. The range of & is divided into 15

bins. Uninformative initial ULP’s [0, 0.25] for
the whole range are updated by the

observations shown in Fig. 1, which have
Gaussian errors v/} with zero mean and
variance 1.

£

7]

b

shservalions

-

mean(y)= LE04

-
o 10 20 0 40 50

ome
Figure i Observations for example

Fig. 2 shows how the ULP’s evolve, and Fig. 3
the uncertainty u(p, p).
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Figure 3 Evolution of uncertainty 1( 5, )
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Convergence of the UPL’s and reduction of
is rapid between about times 23 and 35, when
the observation errors happen to be relatively
small.

6 CONCLUSIONS

ULP's offer a way to incorporate vague prior
knowledge into parameter estimation. They
can be updated by Bayes’ Rule fairly easily
when the observation error pdf is known, the
main extra operation being a sort once per
update. A rapprochement with propagation of
sets of linear inequalities, an alternative which
has been well explored, seems overdue. Both
techniques are complicated greatly if the
observation error is also vaguely specified.
Any such technique is limited by the need to
divide the suppert into a large number of
segments, with  correspondingly  large
computing load. A scalar uncertainty measure
is useful in assessing progress of the
estimation.
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